If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-0.5=0
a = 1; b = 4; c = -0.5;
Δ = b2-4ac
Δ = 42-4·1·(-0.5)
Δ = 18
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18}=\sqrt{9*2}=\sqrt{9}*\sqrt{2}=3\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-3\sqrt{2}}{2*1}=\frac{-4-3\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+3\sqrt{2}}{2*1}=\frac{-4+3\sqrt{2}}{2} $
| 4(3a+10)=5(2a+12) | | 3x+4=5x-22 | | 3x+4=5x-22 | | 3x+4=5x-22 | | 3x+4=5x-22 | | x2+18x+35=-x2+2x+5. | | (3x+6)+(4x+21)+90=180 | | 3.Y=x2+3x2+4 | | x2+18x+35=x2+2x+5. | | 15x-5+16x-2=180 | | 3.7x+2.3=24,5 | | (x+4)^2-5=11 | | Y=(x–1)(x2+2x) | | Y=x2+3x2+4 | | [(x+1)+((10-x)*0.21=0.526 | | [(x+1)+((10-x)*21=0.526 | | Y=3x2+4x | | x+1+2.1-0.21x=0.526 | | 3x+95=5x+35 | | 49+50x=180 | | x²+2x=-3x²+2x+36 | | 65/100=x/130 | | (2x+5)²=121 | | -276=-4-16x | | (10-3i)^2-28=0 | | 7e^2-15=6 | | 7(0.3x-0.9)=6x(18+4x) | | -1/3e+1=-7 | | z2–121=0 | | 0.2x+0.5(70)=0.3(x+70) | | 10x^2-6x=-9 | | 7+7q-5q=0 |